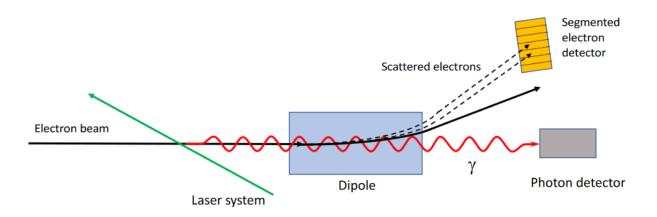
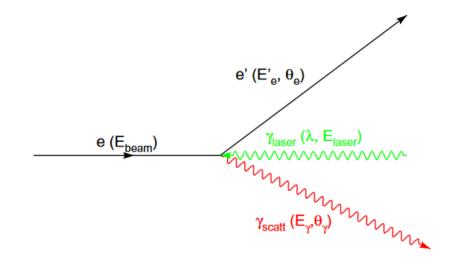
Compton polarimetry for the EIC

Abhay Deshpande, Ciprian Gal, Dave Gaskell, Kent Paschke

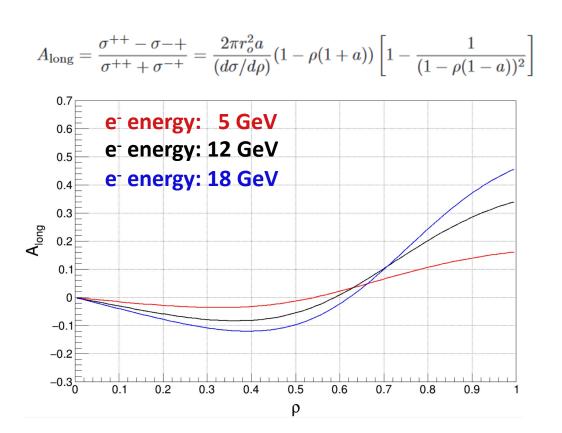


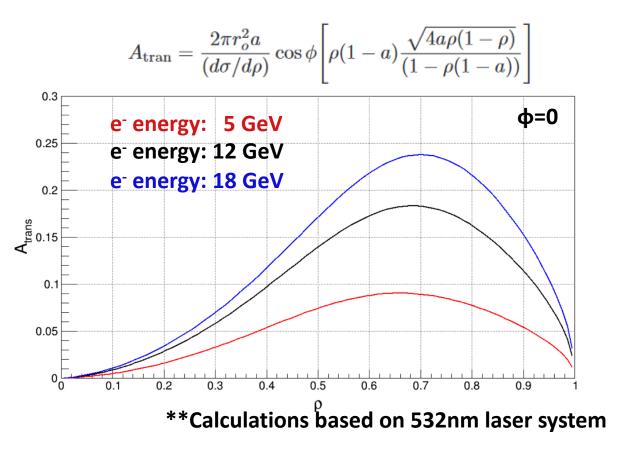

Compton polarimetry

•	Has seen	extensive	use in	collider	and	fixed
	target fac	ilities				

- Recent results have reached below 1% systematics at low energies (with electron measurements)
- It is an ideal candidate because of the nondestructive nature of the measurement

Polarimeter	Energy	Sys. Uncertainty		
CERN LEP*	46 GeV	5%		
HERA LPOL	27 GeV	1.6%		
HERA TPOL*	27 GeV	2.9%		
SLD at SLAC	45.6 GeV	0.5%		
JLAB Hall A	1-6 GeV	1-3%		
JLab Hall C	1.1 GeV	0.6%		

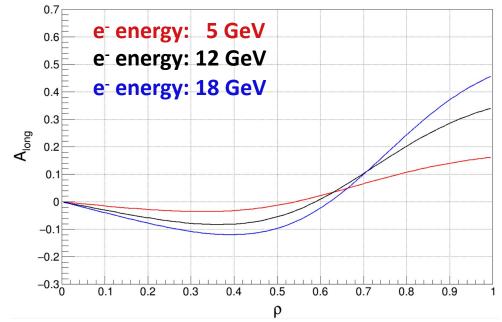



Compton polarimetry: measurement types

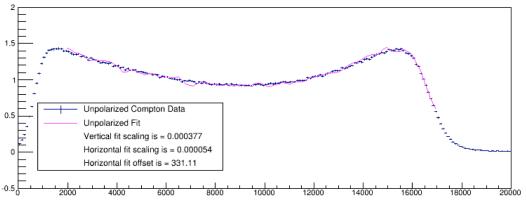
A. Single-photon mode

- Detection event by event; improved precision through fit to energy distribution
- Ideal for low background environments
- B. Multi-photon mode (integrating)
 - The number of detected photons/electrons is measured
 - Will increase the S/B for situations when there is significant backgrounds
- C. Energy weighted multi-photon mode (integrating)
 - The energy of the scattered particles has a linear relationship with measured quantity

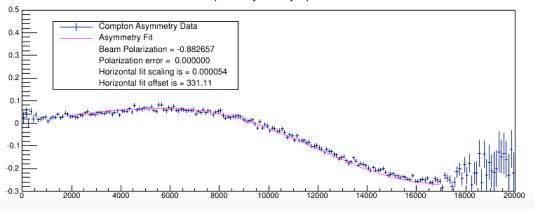
Asymmetries for longitudinal and transverse polarimeters



• For both the longitudinal and transverse polarimetry measurements at the at the energies of interested for the EIC the analyzing powers are significant

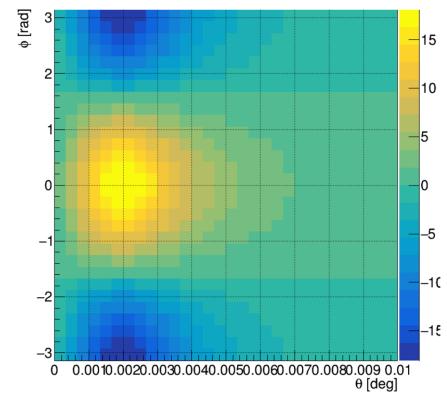

Longitudinal Compton polarimetry

$$A_{\text{long}} = \frac{\sigma^{++} - \sigma^{-+}}{\sigma^{++} + \sigma^{-+}} = \frac{2\pi r_o^2 a}{(d\sigma/d\rho)} (1 - \rho(1+a)) \left[1 - \frac{1}{(1 - \rho(1-a))^2} \right]$$



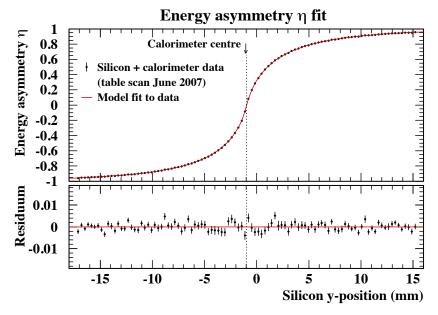
- Photon measurements can have large systematics due to detector response
- Best measurements achieved with electron detection
- At higher energies spectrum threshold less important

Compton Asymmetry Spectrum



HERA FP cavity-based LPOL achieved 0.9-1.1% precision with differential measurements in single-photon mode @ 27 GeV

→ Unlikely similar precision can be achieved at lowest energies envisioned for EIC


Transverse Compton polarimetry

$$A_{\rm tran} = \frac{2\pi r_o^2 a}{(d\sigma/d\rho)} \cos\phi \left[\rho (1-a) \frac{\sqrt{4a\rho(1-\rho)}}{(1-\rho(1-a))} \right]$$
 12 GeV

 Measurements are more challenging because you are looking at a position asymmetry

$$\eta = \frac{E_U - E_D}{E_U + E_D}$$

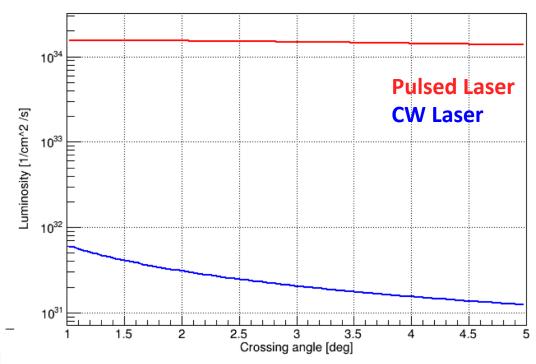
B. Sobloher et al, DESY-11-259, arXiv:1201.2894

- HERA used a sampling calorimeter with top and bottom optically isolated: → Polarization measured via up-down energy asymmetry
- Strip detectors provide can be used to help calibrate the detector response
- With careful polarimeter design, high precision transverse measurements should be achievable

eRHIC specifications

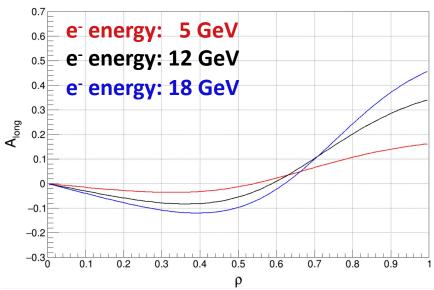
- At 18 GeV bunches will be replaced every 6 min -> polarimetry measurement needs to happen in a much shorter time span
- The amount of electrons per bunch is fairly small ~24 nC → will need bright laser beam to obtain needed luminosity
- Distance between buckets is
 ~10ns → bunch by bunch
 measurement cannot be done
 with a CW laser without super
 fast detectors

Table 1: Maximum Luminosity Parameters


Parameter	hadron	electron		
Center-of-Mass Energy [GeV]	10	14.9		
Energy [GeV]	275	10		
Number of Bunches	13	320		
Particles per Bunch [10 ¹⁰]	6.0	15.1		
Beam Current [A]	1.0	2.5		
Horizontal Emittance [nm]	9.2	20.0		
Vertical Emittance [nm]	1.3	1.0		
Hor. β -function at IP β_x^* [cm]	90	42		
Vert. β -function at IP β_{ν}^* [cm]	4.0	5.0		
Hor./Vert. Fractional Betatron Tunes	0.3/0.31	0.08/0.06		
Horizontal Divergence at IP [mrad]	0.101	0.219		
Vertical Divergence at IP [mrad]	0.179	0.143		
Horizontal Beam-Beam Parameter ξ_x	0.013	0.064		
Vertical Beam-Beam Parameter ξ_{ν}	0.007	0.1		
IBS Growth Time longitudinal/horizontal [hours]	2.2/2.1	-		
Synchrotron Radiation Power [MW]	-	9.18		
Bunch Length [cm]	5	1.9		
Hourglass and Crab Reduction Factor	0	0.87		
Luminosity [10 ³⁴ cm-2sec-1]	1	.05		

CW vs pulsed laser luminosity

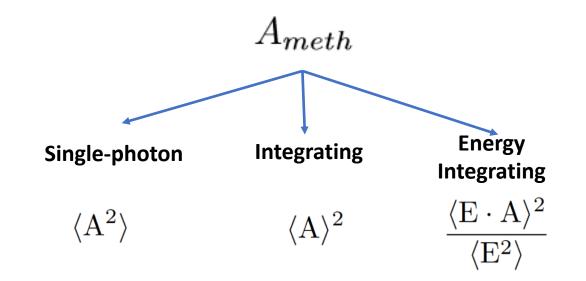
- CW lasers could provide relative rapid measurements for average polarization of all bunches in ring
 - Bunch-by-bunch measurements challenging due to relatively small bunch spacing
- Pulsed system would allow straightforward identification of individual bunches AND improved luminosity
- Looking at a single bunch (with a beam frequency of \sim 78kHz) the luminosity for the same average power in the cavity (1kW) as a function of crossing angle shows a significant advantage for the pulsed cavity
- The conceived laser system has a repetition rate of 10MHz
 - Allow for simultaneous measurement of ~120 bunches, but leaving 100 ns between collisions for detector response
 - Shifting laser phase would allow measurement of all bunches

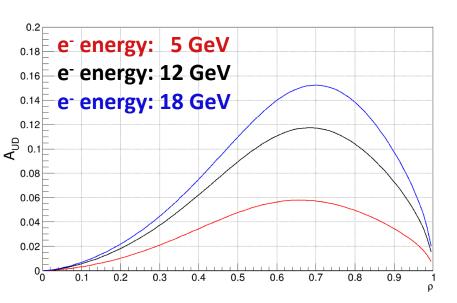

$$\mathcal{L}_{\text{CW}} pprox rac{1 + \cos(lpha_C)}{\sqrt{2\pi}\sin(lpha_C)} rac{I_e}{e} rac{P_L \lambda}{hc^2} rac{1}{\sqrt{\sigma_e^2 + \sigma_\gamma^2}}$$

$$\mathcal{L}_{\text{pulsed}} \approx \frac{1 + \cos(\alpha_C)}{2\pi \sin(\alpha_C)} \frac{I_e}{e} \frac{c}{f_{beam}} \frac{P_L \lambda}{hc^2} \frac{1}{\sqrt{\sigma_e^2 + \sigma_\gamma^2}} \left(\sigma_{e,z}^2 + \sigma_{\gamma,z}^2 + \frac{\sigma_e^2 + \sigma_\gamma^2}{\sin^2(\alpha_c/2)} \right)^{\frac{1}{2}}$$

Time estimations: longitudinal

$$t_{meth} = \left(\mathcal{L} \; \sigma_{\mathrm{Compton}} \; \mathrm{P_e^2 P_\gamma^2} \; \left(\frac{\Delta \mathrm{P_e}}{\mathrm{P_e}}\right)^2 \; \mathrm{A_{meth}^2}\right)^{-1} \qquad \\ \langle \mathrm{A}^2 \rangle \qquad \qquad \langle \mathrm{A} \rangle^2 \qquad \qquad \frac{\langle \mathrm{E} \cdot \mathrm{A} \rangle^2}{\langle \mathrm{E}^2 \rangle}$$

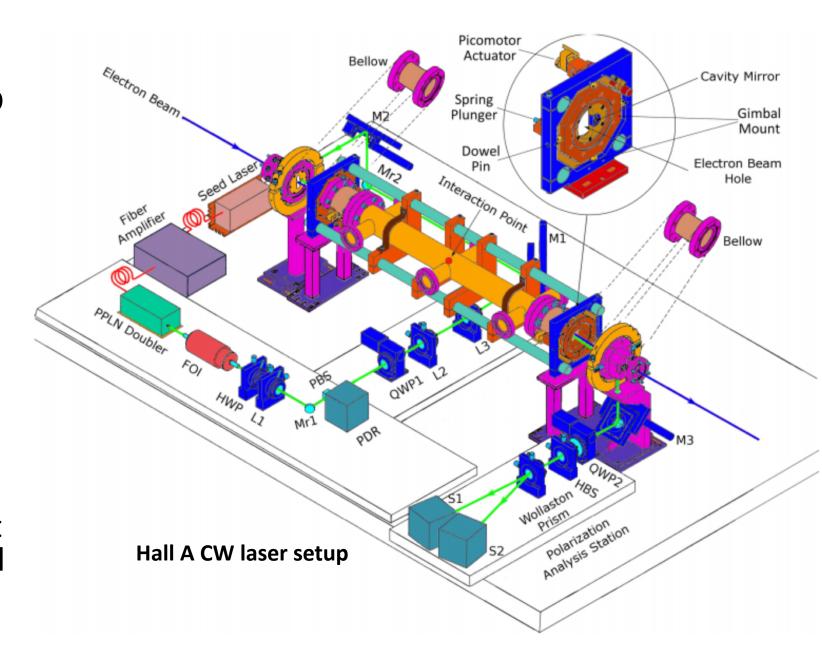



beam energy $[GeV]$	$\langle A_{\rm long}^2 \rangle$	t[s]	$\langle A_{\rm long} \rangle^2$	time [ms]	$\frac{\langle \mathrm{E}\cdot\mathrm{A}\rangle^2}{\langle \mathrm{E}^2\rangle}$	time [ms]
5	0.0061	29	0.0012	166	0.0022	88
12	0.0244	7	0.0033	69	0.0064	36
18	0.0414	4	0.0041	63	0.0085	30

- Differential measurement assumes 1 photon/electron per crossing
 - The power needed for the laser system is approximately 1W
- The integrated method accepts the entire luminosity of the pulsed system (note the change in unit)
- Measurement times for all bunches in ring about 10 times longer

Time estimations: transverse

$$t_{meth} = \left(\mathcal{L} \ \sigma_{\mathrm{Compton}} \ \mathrm{P_e^2 P_{\gamma}^2} \ \left(\frac{\Delta \mathrm{P_e}}{\mathrm{P_e}}\right)^2 \ \mathrm{A_{meth}^2}\right)^{-1}$$


beam energy [GeV]	$\langle A_{\mathrm{UD}}^2 \rangle$	t[s]	$\langle A_{\rm UD} \rangle^2$	time [ms]	$\frac{\langle E \cdot A \rangle^2}{\langle E^2 \rangle}$	time [ms]
5	0.0012	144	0.0008	234	0.0005	352
12	0.0048	365	0.0032	72	0.0019	123
18	0.0080	222	0.0052	49	0.0028	92

- Differential measurement assumes 1 photon/electron per crossing
 - The power needed for the laser system is approximately 1W
- The integrated method accepts the entire luminosity of the pulsed system (note the change in unit)

January 30th 2020 EIC - R&D Meeting 10

Proposed R&D

- We'd like to focus this R&D effort on developing a pulsed cavity with a large average power and large frequency
- Additionally we'd like to increase the robustness of the system by having radsoft items (like seed laser and amplifier) at a large distance from the cavity itself
- Ideally we'd be able to test the system at CEBAF in hall A or hall C

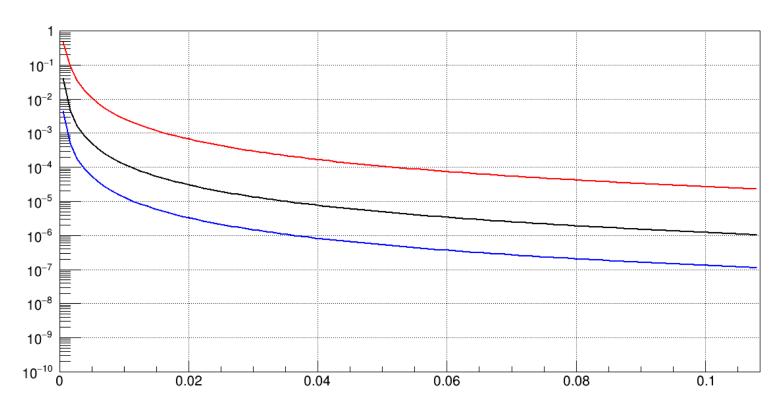
Laser system development

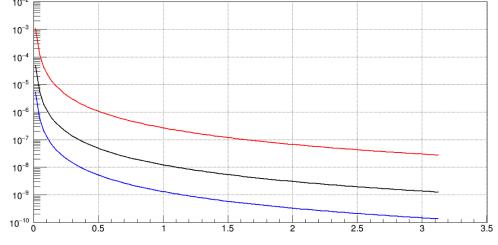
<u>Initial laser development in lab</u>

- Key Equipment required:
 - Mode-locked laser. Fiber amplifier and PPLN crystal also required for green laser.
 - Low-loss mirrors, cavity electronics
 - Some of the above may be borrowed from collaborating institutions

Deployment in beamline

- Could be deployed in either Hall A or C at JLab
- Would require some modification of interaction region/vacuum system
 - Existing system somewhat modular, so modifications could possibly be done relatively cheaply
- Test with beam to verify ability to synchronize laser pulses with beam RF time

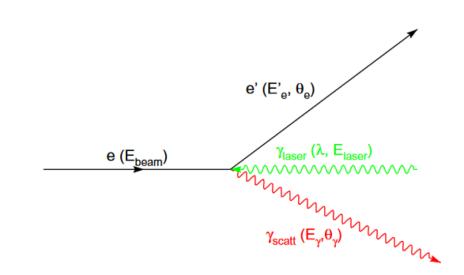

Conclusions


- Pulsed cavity is desirable to be able to make precise polarization measurements of each electron bunch rapidly
- A pulsed laser system allows straightforward measurement of the bunchby-bunch electron polarization without the need for very fast detectors
- CW Fabry-Perot cavities relatively common in accelerator environment pulsed cavity requires R&D and testing

January 30th 2020 EIC - R&D Meeting

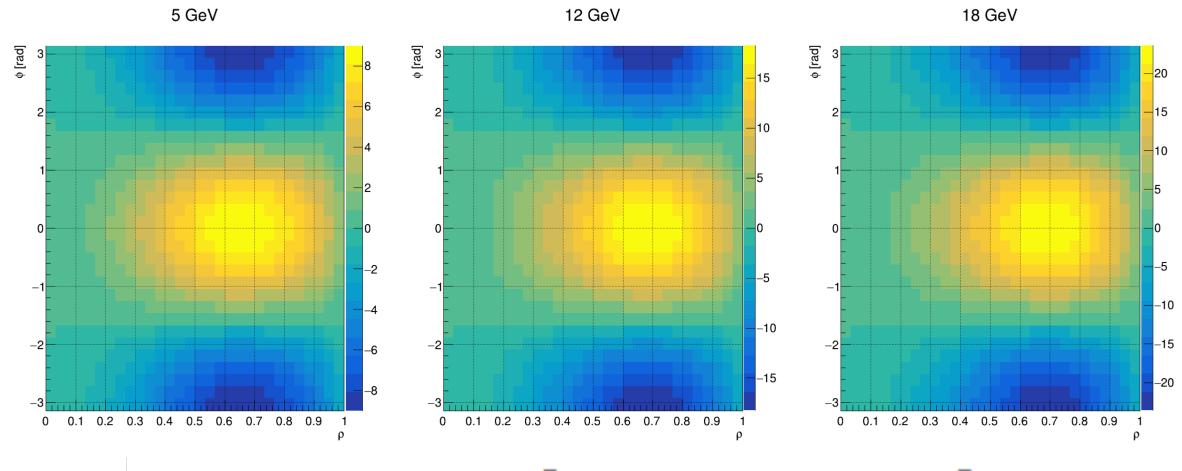
Backup

Rho dependence on angle for 1, 5, 18 GeV (532 nm)



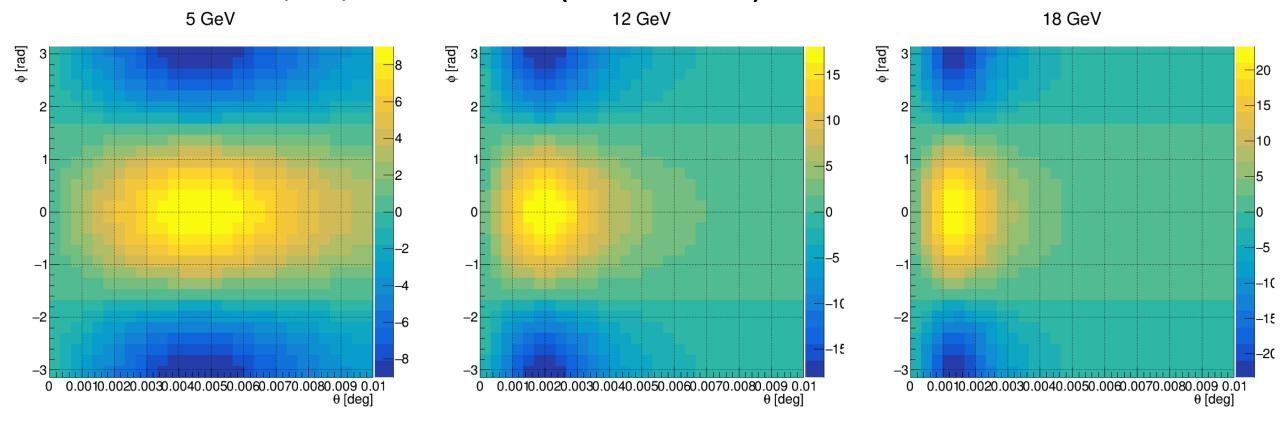
$$E_{\gamma} \approx E_{\text{laser}} \frac{4a\gamma^2}{1 + a\theta_{\gamma}^2 \gamma^2},$$

$$E_{\gamma}^{\mathrm{max}} = 4aE_{\mathrm{laser}}\gamma^{2}$$


$$\rho = E_{\gamma}/E_{\gamma}^{\rm max}$$

$$a = \frac{1}{1 + 4\gamma E_{\text{laser}}/m_e}.$$

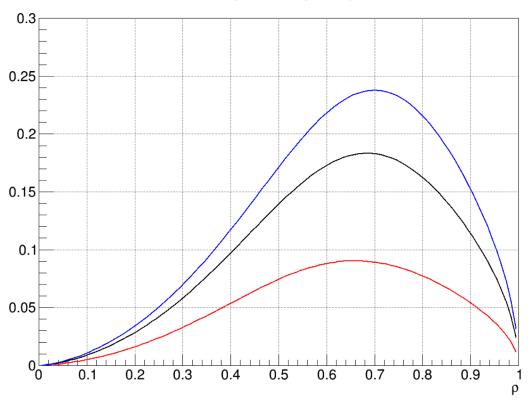
January 30th 2020 EIC - R&D Meeting

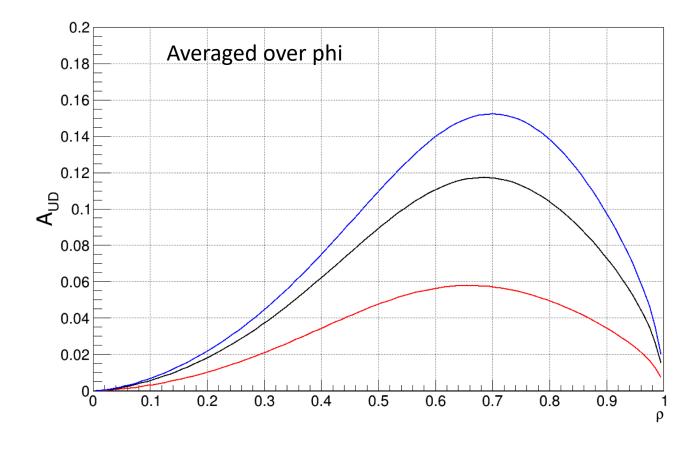

Atrans for 1, 5, 18 GeV (532 nm)

$$A_{\mathrm{tran}} = rac{2\pi r_o^2 a}{(d\sigma/d
ho)}\cos\phi\left[
ho(1-a)rac{\sqrt{4a
ho(1-
ho)}}{(1-
ho(1-a))}
ight].$$

January 30th 2020

Atrans for 1, 5, 18 GeV (532 nm)




$$A_{\text{tran}} = \frac{2\pi r_o^2 a}{(d\sigma/d\rho)} \cos \phi \left[\rho (1-a) \frac{\sqrt{4a\rho(1-\rho)}}{(1-\rho(1-a))} \right].$$

January 30th 2020

Atrans for 1, 5, 18 GeV (532 nm)

AT asymmetry at $\phi=0$

$$A_{\mathrm{tran}} = rac{2\pi r_o^2 a}{(d\sigma/d
ho)}\cos\phi\Bigg[
ho(1-a)rac{\sqrt{4a
ho(1-
ho)}}{(1-
ho(1-a))}\Bigg].$$

January 30th 2020